Photoproduction of Θ⁺ Atsushi Hosaka (RCNP, Osaka Univ) ``` hep-ph/0505134 for \gamma N \rightarrow Kbar\Theta hep-ph/0503149 to appear PRD for \gamma N \rightarrow K\Lambda(1520) S.I. Nam, A. Hosaka and H.-Ch. Kim ``` Recent issue: LEPS observed while CLAS does not #### Motivated by ## K-production new J-Lab data $$\gamma p \rightarrow n K^+ K^0$$ Taken from DeVita's talk at spring APS meeting This is serious, but Does this mean immediately the absence of Θ^+ ? ## Effective Lagrangian approach #### hep-ph/0505134 Nam-Hosaka-Kim - *Tree diagrams* with interactions satisfying symmetries - Parameters: Coupling constants and *form factors* ``` J^P of \Theta^+ 1/2- KN scattering state, (0s)^5 in a quark model 1/2+ 3/2+ LS partner of L=1 state 3/2- Could be a narrow resonance We consider these See the poster by Hyodo, Tomorrow afternoon ``` ### Tree diagrams ### Before the Θ -production ## $\gamma n -> K^- \Lambda(1520)$ and $\gamma p -> \bar{K}^0 \Lambda(1520)$ was studied and large pn asymmetry was known to us Nam-Hosaka-Kim, hep-ph/0503149 to appear PRD ### $\Lambda(1520) J^P = 3/2^-$ | Form factor | F_1 | | | | | |-------------------------|-----------------------------|-----------------------------|--|--|--| | Reactions | $\gamma p o K^+ \Lambda^*$ | $\gamma n o K^0 \Lambda^*$ | | | | | σ | $\sim 900nb$ | $\sim 30nb$ | | | | | $d\sigma/d(\cos\theta)$ | Forward peak | Peak at $\sim 45^{\circ}$ | | | | | $d\sigma/dt$ | Good | No data | | | | $$\Lambda = 700 \text{ MeV} \iff r \sim 0.8 \text{ fm}$$ The presence (for p) or absence (for n) contact term is important #### LEPS data seems to support this result # Charge exchange $$\gamma$$ p -> K⁺ $\Lambda(1520)$ Charge exchanged $$\gamma$$ n \rightarrow K⁰ $\Lambda(1520)$ not exchanged $$\gamma$$ **p** \rightarrow \overline{K}^0 Θ^+ not exchanged $$\gamma$$ n $->$ K⁻ Θ + **Charge exchanged** ### Theta production, $J^P = 3/2$ The contact term plays more important role for $J^P = 3/2^-$ than $1/2^+$ ### **Predictions** $\Lambda = 700 \text{ MeV} \iff r \sim 0.8 \text{ fm}$ | J^P | $3/2^{+}$ | | $3/2^{-}$ | | $1/2^{+}$ | | |-------------------------------|-----------------------|---------------------|------------------------|----------------------|---------------------|----------------------| | $g_{KN\Theta}$ | 0.53 | | 4.22 | | 1.0 | | | $g_{K^*N\Theta}$ | ± 0.91 | | ± 2 | | ± 1.73 | | | Target | n | p | n | p | n | p | | $\frac{\sigma}{d\sigma}$ | $\sim 25~\mathrm{nb}$ | $\sim 1 \text{ nb}$ | $\sim 200~\mathrm{nb}$ | $\sim 4~\mathrm{nb}$ | $\sim 1 \text{ nb}$ | $\sim 1~\mathrm{nb}$ | | $\frac{d\sigma}{d\cos\theta}$ | Forward | $\sim 60^{\circ}$ | Forward | _ | $\sim 45^{\circ}$ | $\sim 45^{\circ}$ | - We see a large asymmetry between pn targets - If Θ^+ is laeger (small Λ) cross sections may be smaller and even more forward peaking - σ ~ few nb or less is consistent with the CLAS result ### LEPS has observed but CLAS does not LEPS: forward angle region CLAS: side Their results are *not inconsistent* 11 # (2) K^* (1-) production • Physics in the t-channel Now κ (0⁻) is allowed to be exchanged **Exotic tetraquark** κ may couple strongly to Θ^+ D.P. Roy, J. Phys. G30, R113 (2004) • Using polarizations of γ and K^* , we can distinguish the exchanged particles # Polarizations as a particle filter Pol. of γ perp. to react. plane If parallel [//], only κ is exchanged If perpendifular [\perp], only κ is exchanged ## Summary #### Photoproduction, revised - *We found a large *pn asymmetry*, especially for J = 3/2 - *No signal in the present CLAS data does not lead immediately to the absence of Θ^+ - *Kinematics at LEPS is very interesting - *K* can be used as a particle (t-channel) filter